A universal probabilistic spike count model

reveals ongoing modulation

Problem
Neural responses throughout the brain are variable

trial-structured data
(e.g. sensory stimuli')

trial-free data
(e.g. open-field navigation?)
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Current approaches:

e cannot flexibly model neural variability with modulation to external covariates
e use different methods for data with and without repeatable trials

feature weak constraints | decoupled mean | modulation of

model on possible count | and variance count statistics
statistics by covariates

parametric count likelihood encoding? x x v
heteroscedastic versions of above* x v v
copula-based countmodels ° v v x
Dirichlet priors and histograms® v v x
universal count model (ours) v v v

Solution and approach

We introduce the uiversal count model (UCM):

observed and/or latent input

capture noise correlations through low-dimensional structure
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e Bayesian method providing prior over modulated SCDs directly for a finite
count range, analogous to Dirichlet priors

e stochastic variational inference for approximate posteriors over latent states
and modulated SCDs

e for C = K and sulfficiently many latent dimensions, the model is universal in
that it can capture any modulated joint SCD

of neural variability

Model fit assessment

e cross-validated log-likelihood cvLL
indicates better predictive performance of model for higher values
e Kolmogorov-Smirnov test statistic kg
quantifies whether data is statistically distinguishable from model
e generalized Z-scores ¢
transformed spike count values using model posterior, samples from the
model distribution lead to unit normal distributed scores
o dispersion metric Tpg
quantifies if Z-scores are more/less dispersed, i.e. variable, than the model
e generalized noise correlations 7;;
pairwise correlations in generalized Z-scores, can be transformed to Fisher-Z
value (real number, more convenient sampling distribution under model)

Validation on synthetic data

Heteroscedastic Conway-Maxwell-Poisson "head direction" population

UCM recovers latent states .
UCM recovers full SCDs Universal (GP) posterior G(2)
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UCM recovers heteroscedastic count process data for both observed and
latent input settings, while baseline models fail to capture count statistics

Poisson "head direction” population modulated by a latent state
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Observed input UCM captures empirical single neuron count statistics, while
latent-observed UCM additionally recovers unobserved shared modulator
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Head direction cell population

Data recorded from anterodorsal thalamic nucleus (ADn) and postsubiculum
(PoS) in the mouse brain®, binned at 40 ms.

Observed input

non- constant FF
cell 12
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no simple relationship
between FF and rate
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UCM captures single neuron count statistics while baseline methods fail,
revealing both super- and sub-Poissonian variability (FF > 1 and < 1), decoupled
rate and FF, and cases where FF modulation exceeds that of the rate

Latent-observed input
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Two-dimensional latent trajectories with a timescale of ~1 s explain noise
correlations best, primarily modulating rates and reducing apparent variability

Conclusion

We introduced the UCM, a Bayesian method inferring modulated joint SCDs from
spike count data. Compared to current methods, UCM removes strong constraints
on count statistics while not requiring trials. Applied to mouse head direction cells:
e Cells can show both over- and underdispersion (latter common at higher rates)
e FF and mean counts can be decoupled

e FF modulation can be comparable or even exceed that of the rate.
e 2D latent states with a timescale of ~1 s explain away noise correlations
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